Dạng phương trình bậc hai chứa tham số luôn là một trong những chủ đề hấp dẫn trong môn Toán học. Việc giải phương trình này đòi hỏi chúng ta phải nắm vững các phương pháp giải và biện luận phương trình theo tham số. Trong bài viết này, chúng ta sẽ cùng nhau điểm qua 30 bài tập được chọn lọc, giúp bạn rèn kỹ năng giải phương trình bậc hai chứa tham số một cách thông thạo.

Phương pháp giải

Trước khi đi vào giải phương trình, chúng ta cần xác định các hệ số a, b, c (hoặc a, b’, c) trong phương trình. Sau đó, ta sẽ áp dụng các phương pháp giải phương trình bậc hai theo tham số một cách phù hợp. Cụ thể như sau:

Dạng 3.1: Giải và biện luận phương trình theo tham số m

Bước 1: Xác định các hệ số a, b, c (hoặc a, b’, c).

Bước 2: Giải phương trình theo m:

Bước 3: Kết luận.

Biện luận phương trình:

Dạng 3.2: Xác định dấu các nghiệm của phương trình

Bước 1: Xác định hệ số.

Bước 2: Tính Δ = b2 – 4ac (hoặc Δ’ = b2 – 4ac) để kiểm tra phương trình có nghiệm hay không.

Bước 3: Trong trường hợp phương trình có nghiệm (Δ ≥ 0 hoặc Δ’ ≥ 0), tính tổng S và tích P của hai nghiệm theo định lý Vi-ét để xét dấu các nghiệm của phương trình.

Chú ý: Phương trình có hai nghiệm trái dấu chỉ cần xét P < 0 hoặc a.c < 0.

Bước 4: Kết luận.

Dạng 3.3: Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước

Dạng 3.3.1: Tìm m để phương trình có nghiệm thỏa mãn điều kiện về dấu hoặc thỏa mãn đẳng thức, bất đẳng thức liên hệ giữa các nghiệm

Bước 1: Tìm điều kiện a ≠ 0 (nếu cần) và điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.

Bước 3: Sử dụng hệ thức Vi-ét, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.

Bước 4: Đối chiếu điều kiện và kết luận.

Dạng 3.3.2: Tìm tham số m để phương trình có một nghiệm là x0.

Bước 1: Thay giá trị x0 vào phương trình để tìm tham số.

Bước 2: Thay giá trị của tham số vào phương trình hoặc hệ thức Vi-ét để tìm nghiệm còn lại.

Bước 3: Kết luận.

Dạng 3.3.3: Tìm giá trị của tham số để hai phương trình có ít nhất một nghiệm chung.

Bước 1: Tìm điều kiện để các phương trình có nghiệm.

Bước 2: Tìm nghiệm chung và tìm tham số: Có thể giả sử x0 là nghiệm chung, lập hệ phương trình trình hai ẩn (x0 và tham số) và giải hệ phương trình.

Bước 3: So sánh với điều kiện và kết luận.

Các ví dụ

Sau đây là một số ví dụ giải phương trình bậc hai chứa tham số một cách cụ thể:

Ví dụ 1: Giải phương trình x2 – 2x + 1 – m2 = 0 với m là tham số, m ≠ 0.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải:

Chọn A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 2: Cho phương trình x2 + √7x + 1 = 0. Khẳng định nào sau đây là đúng?

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải:

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 3: Số các giá trị nguyên của tham số m để phương trình x2 – 2x + m = 0 có hai nghiệm phân biệt x1; x2 sao cho x12.x22 ≤ 4 là:.

Lời giải:

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 4: Phương trình bậc hai mx2 + (2m + 1)x + 3 = 0 có một nghiệm là x = -1. Giá trị của m và nghiệm còn lại là:

Lời giải:

Chọn A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 5: Cho hai phương trình bậc hai x2 + 2x + m = 0 (1) và x2 + mx + 2 = 0 (2) (với m là tham số). Tìm m để hai phương trình có ít nhất một nghiệm chung.

Lời giải:

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài tập vận dụng (có đáp án)

Dưới đây là một số bài tập vận dụng giải phương trình bậc hai chứa tham số. Hãy cùng thử sức và tìm ra đáp án chính xác nhé:

Bài 1: Cho phương trình bậc hai (m – 1)x2 – 2mx + m + 2 = 0 (với m là tham số). Giải phương trình trong trường hợp m < 2.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải:

Đáp án C

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 2: Cho m là số nguyên để phương trình 2×2 – 4x + m – 3 = 0 có hai nghiệm phân biệt cùng dấu. Giá trị của biểu thức là:

Lời giải:

Đáp án B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 3: Phương trình 2×2 + (m – 1)x + 2m + 4 = 0 có một nghiệm bằng 5. Nghiệm còn lại của phương trình là:

Lời giải:

Đáp án B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 4: Với giá trị nào của m thì hai phương trình x2 – mx + m + 1 = 0 (1) và x2 – (m – 2)x + m – 3 = 0 (2) có ít nhất một nghiệm chung?

Lời giải:

Đáp án C

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 5: Giá trị nguyên dương của m để phương trình 2×2 – 4x + m = 0 có hai nghiệm dương phân biệt là:

Lời giải:

Đáp án D

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 6: Tìm giá trị của tham số m để phương trình 3×2 – 4x + m = 0 có hai nghiệm x1; x2 thỏa mãn 3×1 + 7×2 = 0.

Lời giải:

Đáp án A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 7: Tìm m để phương trình x2 + (1 – 2m)x + 3m = 0 có hai nghiệm x1, x2 là độ dài hai cạnh của tam giác vuông có cạnh huyền là 5.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải:

Đáp án B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 8: Cho phương trình (m – 1)x2 – 2mx + m – 4 = 0 (m là tham số, m ≠ 0). Gọi x1, x2 là hai nghiệm của phương trình. Giá trị của biểu thức A = 3(x1 + x2) + 2x1x2 – 8 là:

Lời giải:

Đáp án A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 9: Cho phương trình bậc hai x2 – mx + m – 1 = 0 (với m là tham số). Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để đạt giá trị lớn nhất.

Lời giải:

Đáp án D

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 10: Gọi x1, x2 là hai nghiệm của phương trình bậc hai -x2 – (m – 1)x + m2 + m – 2 = 0 (với m là tham số). Giá trị nhỏ nhất của biểu thức x12 + x22 là:

Lời giải:

Đáp án A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Xem thêm các dạng bài tập Toán chi tiết và hay khác:

30 bài tập Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án 2024 - Bí Kíp Điểm 10

30 bài tập Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án 2024

Dạng phương trình bậc hai chứa tham số luôn là một trong những chủ đề hấp dẫn trong môn Toán học. Việc giải phương trình này đòi hỏi chúng ta phải nắm vững các phương pháp giải và biện luận phương trình theo tham số. Trong bài viết này, chúng ta sẽ cùng nhau điểm qua 30 bài tập được chọn lọc, giúp bạn rèn kỹ năng giải phương trình bậc hai chứa tham số một cách thông thạo.

Phương pháp giải

Trước khi đi vào giải phương trình, chúng ta cần xác định các hệ số a, b, c (hoặc a, b’, c) trong phương trình. Sau đó, ta sẽ áp dụng các phương pháp giải phương trình bậc hai theo tham số một cách phù hợp. Cụ thể như sau:

Dạng 3.1: Giải và biện luận phương trình theo tham số m

Bước 1: Xác định các hệ số a, b, c (hoặc a, b’, c).

Bước 2: Giải phương trình theo m:

  • Với giá trị của m mà a = 0, giải phương trình bậc nhất.
  • Với giá trị của m mà a ≠ 0, giải phương trình bậc hai: Tính Δ = b’2 – ac (hoặc Δ’ = b2 – 4ac), xét các trường hợp của Δ chứa tham số và tìm nghiệm theo tham số.

Bước 3: Kết luận.

Biện luận phương trình:

  • Phương trình có nghiệm khi:
    • Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.
    • Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm.
  • Phương trình có một nghiệm khi:
    • Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.
    • Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm kép.
  • Phương trình có hai nghiệm phân biệt khi: Giá trị của m mà a ≠ 0, phương trình bậc hai có hai nghiệm phân biệt.

Dạng 3.2: Xác định dấu các nghiệm của phương trình

Bước 1: Xác định hệ số.

Bước 2: Tính Δ = b2 – 4ac (hoặc Δ’ = b2 – 4ac) để kiểm tra phương trình có nghiệm hay không.

Bước 3: Trong trường hợp phương trình có nghiệm (Δ ≥ 0 hoặc Δ’ ≥ 0), tính tổng S và tích P của hai nghiệm theo định lý Vi-ét để xét dấu các nghiệm của phương trình.

  • Phương trình có hai nghiệm cùng dấu: P > 0.
  • Phương trình có hai nghiệm dương: .
  • Phương trình có hai nghiệm âm: .
  • Phương trình có hai nghiệm trái dấu: P < 0.

Chú ý: Phương trình có hai nghiệm trái dấu chỉ cần xét P < 0 hoặc a.c < 0.

Bước 4: Kết luận.

Dạng 3.3: Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước

Dạng 3.3.1: Tìm m để phương trình có nghiệm thỏa mãn điều kiện về dấu hoặc thỏa mãn đẳng thức, bất đẳng thức liên hệ giữa các nghiệm

Bước 1: Tìm điều kiện a ≠ 0 (nếu cần) và điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.

Bước 3: Sử dụng hệ thức Vi-ét, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.

Bước 4: Đối chiếu điều kiện và kết luận.

Dạng 3.3.2: Tìm tham số m để phương trình có một nghiệm là x0.

Bước 1: Thay giá trị x0 vào phương trình để tìm tham số.

Bước 2: Thay giá trị của tham số vào phương trình hoặc hệ thức Vi-ét để tìm nghiệm còn lại.

Bước 3: Kết luận.

Dạng 3.3.3: Tìm giá trị của tham số để hai phương trình có ít nhất một nghiệm chung.

Bước 1: Tìm điều kiện để các phương trình có nghiệm.

Bước 2: Tìm nghiệm chung và tìm tham số: Có thể giả sử x0 là nghiệm chung, lập hệ phương trình trình hai ẩn (x0 và tham số) và giải hệ phương trình.

Bước 3: So sánh với điều kiện và kết luận.

Các ví dụ

Sau đây là một số ví dụ giải phương trình bậc hai chứa tham số một cách cụ thể:

Ví dụ 1: Giải phương trình x2 – 2x + 1 – m2 = 0 với m là tham số, m ≠ 0.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải:

Chọn A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 2: Cho phương trình x2 + √7x + 1 = 0. Khẳng định nào sau đây là đúng?

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải:

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 3: Số các giá trị nguyên của tham số m để phương trình x2 – 2x + m = 0 có hai nghiệm phân biệt x1; x2 sao cho x12.x22 ≤ 4 là:.

Lời giải:

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 4: Phương trình bậc hai mx2 + (2m + 1)x + 3 = 0 có một nghiệm là x = -1. Giá trị của m và nghiệm còn lại là:

Lời giải:

Chọn A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 5: Cho hai phương trình bậc hai x2 + 2x + m = 0 (1) và x2 + mx + 2 = 0 (2) (với m là tham số). Tìm m để hai phương trình có ít nhất một nghiệm chung.

Lời giải:

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài tập vận dụng (có đáp án)

Dưới đây là một số bài tập vận dụng giải phương trình bậc hai chứa tham số. Hãy cùng thử sức và tìm ra đáp án chính xác nhé:

Bài 1: Cho phương trình bậc hai (m – 1)x2 – 2mx + m + 2 = 0 (với m là tham số). Giải phương trình trong trường hợp m < 2.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải:

Đáp án C

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 2: Cho m là số nguyên để phương trình 2×2 – 4x + m – 3 = 0 có hai nghiệm phân biệt cùng dấu. Giá trị của biểu thức là:

Lời giải:

Đáp án B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 3: Phương trình 2×2 + (m – 1)x + 2m + 4 = 0 có một nghiệm bằng 5. Nghiệm còn lại của phương trình là:

Lời giải:

Đáp án B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 4: Với giá trị nào của m thì hai phương trình x2 – mx + m + 1 = 0 (1) và x2 – (m – 2)x + m – 3 = 0 (2) có ít nhất một nghiệm chung?

Lời giải:

Đáp án C

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 5: Giá trị nguyên dương của m để phương trình 2×2 – 4x + m = 0 có hai nghiệm dương phân biệt là:

Lời giải:

Đáp án D

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 6: Tìm giá trị của tham số m để phương trình 3×2 – 4x + m = 0 có hai nghiệm x1; x2 thỏa mãn 3×1 + 7×2 = 0.

Lời giải:

Đáp án A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 7: Tìm m để phương trình x2 + (1 – 2m)x + 3m = 0 có hai nghiệm x1, x2 là độ dài hai cạnh của tam giác vuông có cạnh huyền là 5.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải:

Đáp án B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 8: Cho phương trình (m – 1)x2 – 2mx + m – 4 = 0 (m là tham số, m ≠ 0). Gọi x1, x2 là hai nghiệm của phương trình. Giá trị của biểu thức A = 3(x1 + x2) + 2x1x2 – 8 là:

Lời giải:

Đáp án A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 9: Cho phương trình bậc hai x2 – mx + m – 1 = 0 (với m là tham số). Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để đạt giá trị lớn nhất.

Lời giải:

Đáp án D

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Bài 10: Gọi x1, x2 là hai nghiệm của phương trình bậc hai -x2 – (m – 1)x + m2 + m – 2 = 0 (với m là tham số). Giá trị nhỏ nhất của biểu thức x12 + x22 là:

Lời giải:

Đáp án A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Xem thêm các dạng bài tập Toán chi tiết và hay khác: